McqMate

Q. |
## Which of the following is a good test dataset characteristic? |

A. | large enough to yield meaningful results |

B. | is representative of the dataset as a whole |

C. | both a and b |

D. | none of the above |

Answer» C. both a and b |

823

0

Do you find this helpful?

5

View all MCQs in

Machine Learning (ML)No comments yet

- Imagine, you are solving a classification problems with highly imbalanced class. The majority class is observed 99% of times in the training data. Your model has 99% accuracy after taking the predictions on test data. Which of the following is true in such a case? 1. Accuracy metric is not a good idea for imbalanced class problems. 2.Accuracy metric is a good idea for imbalanced class problems. 3.Precision and recall metrics are good for imbalanced class problems. 4.Precision and recall metrics aren’t good for imbalanced class problems.
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, What do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?