McqMate

Q. |
## Lets say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset? |

A. | all categories of categorical variable are not present in the test dataset. |

B. | frequency distribution of categories is different in train as compared to the test dataset. |

C. | train and test always have same distribution. |

D. | both a and b |

Answer» D. both a and b |

2.2k

0

Do you find this helpful?

7

View all MCQs in

Machine Learning (ML)No comments yet

- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, What do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?