McqMate

Q. |
## Support vectors are the data points that lie closest to the decision surface. |

A. | true |

B. | false |

Answer» A. true |

1.2k

0

Do you find this helpful?

1

View all MCQs in

Machine Learning (ML)No comments yet

- Support vectors are the data points that lie closest to the decision surface.
- Suppose we train a hard-margin linear SVM on n > 100 data points in R2, yielding a hyperplane with exactly 2 support vectors. If we add one more data point and retrain the classifier, what is the maximum possible number of support vectors for the new hyperplane (assuming the n + 1 points are linearly separable)?
- Support vectors are the data points that lie closest to the decision
- Suppose you are using a Linear SVM classifier with 2 class classification problem. Now you have been given the following data in which some points are circled red that are representing support vectors.If you remove the following any one red points from the data. Does the decision boundary will change?
- Suppose you are using a Linear SVM classifier with 2 class classification problem. Now you have been given the following data in which some points are circled red that are representing support vectors.If you remove the following any one red points from the data. Does the decision boundary will change?
- Suppose on performing reduced error pruning, we collapsed a node and observed an improvement in the prediction accuracy on the validation set. Which among the following statements are possible in light of the performance improvement observed? (a) The collapsed node helped overcome the effect of one or more noise affected data points in the training set (b) The validation set had one or more noise affected data points in the region corresponding to the collapsed node (c) The validation set did not have any data points along at least one of the collapsed branches (d) The validation set did have data points adversely affected by the collapsed node
- which of the following cases will K-Means clustering give poor results? 1. Data points with outliers 2. Data points with different densities 3. Data points with round shapes 4. Data points with non-convex shapes
- In which of the following cases will K-Means clustering fail to give good results? 1. Data points with outliers 2. Data points with different densities 3. Data points with round shapes 4. Data points with non-convex shapes
- Having built a decision tree, we are using reduced error pruning to reduce the size of the tree. We select a node to collapse. For this particular node, on the left branch, there are 3 training data points with the following outputs: 5, 7, 9.6 and for the right branch, there are four training data points with the following outputs: 8.7, 9.8, 10.5, 11. What were the original responses for data points along the two branches (left & right respectively) and what is the new response after collapsing the node?
- Let S1 and S2 be the set of support vectors and w1 and w2 be the learnt weight vectors for a linearly separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?