McqMate

Q. |
## Impact of high variance on the training set ? |

A. | overfitting |

B. | underfitting |

C. | both underfitting & overfitting |

D. | depents upon the dataset |

Answer» A. overfitting |

2.3k

0

Do you find this helpful?

18

View all MCQs in

Machine Learning (ML)No comments yet

- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, What do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. Now we increase the training set size gradually. As the training set size increases, what do you expect will happen with the mean training error?
- Regarding bias and variance, which of the following statements are true? (Here ‘high’ and ‘low’ are relative to the ideal model. (i) Models which overfit are more likely to have high bias (ii) Models which overfit are more likely to have low bias (iii) Models which overfit are more likely to have high variance (iv) Models which overfit are more likely to have low variance
- Regarding bias and variance, which of the following statements are true? (Here ‘high’ and ‘low’ are relative to the ideal model. (i) Models which overfit are more likely to have high bias (ii) Models which overfit are more likely to have low bias (iii) Models which overfit are more likely to have high variance (iv) Models which overfit are more likely to have low variance
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?