McqMate

Q. |
## Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of its hyper parameter.What would happen when you use very small C (C~0)? |

A. | misclassification would happen |

B. | data will be correctly classified |

C. | can't say |

D. | none of these |

Answer» A. misclassification would happen |

655

0

Do you find this helpful?

10

View all MCQs in

Machine Learning (ML)No comments yet

- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it’s hyper parameter.What would happen when you use very small C (C~0)?
- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it�s hyper parameter.What would happen when you use very large value of C(C->infinity)?
- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it’s hyper parameter.What would happen when you use very large value of C(C->infinity)?
- In SVM which has quadratic kernel function of polynomial degree 2 that has slack variable C as one hyper paramenter. What would happen if we use very large value for C
- Suppose you have trained an SVM with linear decision boundary after training SVM, you correctly infer that your SVM model is under fitting. Which of the following is best option would you more likely to consider iterating SVM next time?
- Suppose you have trained an SVM with linear decision boundary after training SVM, you correctly infer that your SVM model is under fitting.Which of the following option would you more likely to consider iterating SVM next time?
- Suppose you have trained an SVM with linear decision boundary after training SVM, you correctly infer that your SVM model is under fitting.Which of the following option would you more likely to consider iterating SVM next time?
- We usually use feature normalization before using the Gaussian kernel in SVM. What is true about feature normalization? 1. We do feature normalization so that new feature will dominate other 2. Some times, feature normalization is not feasible in case of categorical variables 3. Feature normalization always helps when we use Gaussian kernel in SVM
- We usually use feature normalization before using the Gaussian kernel in SVM. What is true about feature normalization? 1.We do feature normalization so that new feature will dominate other 2. Some times, feature normalization is not feasible in case of categorical variables 3. Feature normalization always helps when we use Gaussian kernel in SVM
- We usually use feature normalization before using the Gaussian kernel in SVM. What is true about feature normalization? 1. We do feature normalization so that new feature will dominate other 2. Some times, feature normalization is not feasible in case of categorical variables3. Feature normalization always helps when we use Gaussian kernel in SVM