McqMate

Q. |
## Linear Regression is a _______ machine learning algorithm. |

A. | supervised |

B. | unsupervised |

C. | semi-supervised |

D. | can\t say |

Answer» A. supervised |

2.3k

0

Do you find this helpful?

23

View all MCQs in

Machine Learning (ML)No comments yet

- What is/are true about ridge regression? 1. When lambda is 0, model works like linear regression model 2. When lambda is 0, model doesn't work like linear regression model 3. When lambda goes to infinity, we get very, very small coefficients approaching 0 4. When lambda goes to infinity, we get very, very large coefficients approaching infinity
- What is/are true about ridge regression? 1. When lambda is 0, model works like linear regression model 2. When lambda is 0, model doesn’t work like linear regression model 3. When lambda goes to infinity, we get very, very small coefficients approaching 0 4. When lambda goes to infinity, we get very, very large coefficients approaching infinity
- Which of the following are correct statement(s) about stacking? 1. A machine learning model is trained on predictions of multiple machine learning models 2. A Logistic regression will definitely work better in the second stage as compared to other classification methods 3. First stage models are trained on full / partial feature space of training data
- Which of the following are correct statement(s) about stacking? A machine learning model is trained on predictions of multiple machine learning models A Logistic regression will definitely work better in the second stage as compared to other classification methods First stage models are trained on full / partial feature space of training data
- Linear Regression is a supervised machine learning algorithm.
- Linear Regression is a supervised machine learning algorithm.
- In machine learning, an algorithm (or learning algorithm) is said to be unstable if a small change in training data cause the large change in the learned classifiers. True or False: Bagging of unstable classifiers is a good idea
- In a linear regression problem, we are using �R-squared� to measure goodness-of-fit. We add a feature in linear regression model and retrain the same model.Which of the following option is true?
- In a linear regression problem, we are using “R-squared” to measure goodness-of-fit. We add a feature in linear regression model and retrain the same model.Which of the following option is true?
- Machine learning techniques differ from statistical techniques in that machine learning methods