McqMate

Q. |
## A person trained to interact with a human expert in order to capture their knowledge. |

A. | knowledge programmer |

B. | knowledge developer r |

C. | knowledge engineer |

D. | knowledge extractor |

Answer» D. knowledge extractor |

1.4k

0

Do you find this helpful?

12

View all MCQs in

Machine Learning (ML)No comments yet

- Which of the following are correct statement(s) about stacking? 1. A machine learning model is trained on predictions of multiple machine learning models 2. A Logistic regression will definitely work better in the second stage as compared to other classification methods 3. First stage models are trained on full / partial feature space of training data
- Which of the following are correct statement(s) about stacking? A machine learning model is trained on predictions of multiple machine learning models A Logistic regression will definitely work better in the second stage as compared to other classification methods First stage models are trained on full / partial feature space of training data
- Based on survey , it was found that the probability that person like to watch serials is 0.25 and the probability that person like to watch netflix series is 0.43. Also the probability that person like to watch serials and netflix sereis is 0.12. what is the probability that a person doesn't like to watch either?
- Based on survey , it was found that the probability that person like to watch serials is 0.25 and the probability that person like to watch netflix series is 0.43. Also the probability that person like to watch serials and netflix sereis is 0.12. what is the probability that a person doesn't like to watch either?
- Suppose you have trained an SVM with linear decision boundary after training SVM, you correctly infer that your SVM model is under fitting. Which of the following is best option would you more likely to consider iterating SVM next time?
- You trained a binary classifier model which gives very high accuracy on the training data, but much lower accuracy on validation data. Which is false.
- Assume that you are given a data set and a neural network model trained on the data set. You are asked to build a decision tree model with the sole purpose of understanding/interpreting the built neural network model. In such a scenario, which among the following measures would you concentrate most on optimising?
- Suppose you are using stacking with n different machine learning algorithms with k folds on data. Which of the following is true about one level (m base models + 1 stacker) stacking? Note: Here, we are working on binary classification problem All base models are trained on all features You are using k folds for base models
- Can a model trained for item based similarity also choose from a given set of items?
- Suppose you have trained an SVM with linear decision boundary after training SVM, you correctly infer that your SVM model is under fitting.Which of the following option would you more likely to consider iterating SVM next time?