McqMate

Q. |
## You are given sesimic data and you want to predict next earthquake , this is an example of |

A. | supervised learning |

B. | reinforcement learning |

C. | unsupervised learning |

D. | dimensionality reduction |

Answer» A. supervised learning |

2.4k

0

Do you find this helpful?

1

View all MCQs in

Machine Learning (ML)No comments yet

- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it�s hyper parameter.What would happen when you use very small C (C~0)?
- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it�s hyper parameter.What would happen when you use very large value of C(C->infinity)?
- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it’s hyper parameter.What would happen when you use very small C (C~0)?
- Suppose you are building a SVM model on data X. The data X can be error prone which means that you should not trust any specific data point too much. Now think that you want to build a SVM model which has quadratic kernel function of polynomial degree 2 that uses Slack variable C as one of it’s hyper parameter.What would happen when you use very large value of C(C->infinity)?
- Let�s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- Let’s say, you are working with categorical feature(s) and you have not looked at the distribution of the categorical variable in the test data. You want to apply one hot encoding (OHE) on the categorical feature(s). What challenges you may face if you have applied OHE on a categorical variable of train dataset?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?
- We have been given a dataset with n records in which we have input attribute as x and output attribute as y. Suppose we use a linear regression method to model this data. To test our linear regressor, we split the data in training set and test set randomly. What do you expect will happen with bias and variance as you increase the size of training data?