McqMate
These multiple-choice questions (MCQs) are designed to enhance your knowledge and understanding in the following areas: Electrical Engineering .
1. |
Gradient of a function is a constant. State True/False. |
A. | true |
B. | false |
Answer» B. false |
2. |
The mathematical perception of the gradient is said to be |
A. | tangent |
B. | chord |
C. | slope |
D. | arc |
Answer» C. slope |
3. |
Divergence of gradient of a vector function is equivalent to |
A. | laplacian operation |
B. | curl operation |
C. | double gradient operation |
D. | null vector |
Answer» A. laplacian operation |
4. |
Curl of gradient of a vector is |
A. | unity |
B. | zero |
C. | null vector |
D. | depends on the constants of the vector |
Answer» C. null vector |
5. |
Find the gradient of the function given by, x2 + y2 + z2 at (1,1,1) |
A. | i + j + k |
B. | 2i + 2j + 2k |
C. | 2xi + 2yj + 2zk |
D. | 4xi + 2yj + 4zk |
Answer» B. 2i + 2j + 2k |
6. |
The gradient can be replaced by which of the following? |
A. | maxwell equation |
B. | volume integral |
C. | differential equation |
D. | surface integral |
Answer» C. differential equation |
7. |
. Find the gradient of the function sin x + cos y. |
A. | cos x i – sin y j |
B. | cos x i + sin y j |
C. | sin x i – cos y j |
D. | sin x i + cos y j |
Answer» A. cos x i – sin y j |
8. |
The divergence of a vector is a scalar. State True/False. |
A. | true |
B. | false |
Answer» A. true |
9. |
The divergence concept can be illustrated using Pascal’s law. State True/False. |
A. | true |
B. | false |
Answer» A. true |
10. |
Compute the divergence of the vector xi + yj + zk. |
A. | 0 |
B. | 1 |
C. | 2 |
D. | 3 |
Answer» D. 3 |
11. |
Find the divergence of the vector yi + zj + xk. |
A. | -1 |
B. | 0 |
C. | 1 |
D. | 3 |
Answer» B. 0 |
12. |
Find the divergence of the vector F= xe-x i + y j – xz k |
A. | (1 – x)(1 + e-x) |
B. | (x – 1)(1 + e-x) |
C. | (1 – x)(1 – e) |
D. | (x – 1)(1 – e) |
Answer» A. (1 – x)(1 + e-x) |
13. |
Find whether the vector is solenoidal, E = yz i + xz j + xy k |
A. | yes, solenoidal |
B. | no, non-solenoidal |
C. | solenoidal with negative divergence |
D. | variable divergence |
Answer» A. yes, solenoidal |
14. |
Find the divergence of the field, P = x2yz i + xz k |
A. | xyz + 2x |
B. | 2xyz + x |
C. | xyz + 2z |
D. | 2xyz + z |
Answer» B. 2xyz + x |
15. |
Identify the nature of the field, if the divergence is zero and curl is also zero. |
A. | solenoidal, irrotational |
B. | divergent, rotational |
C. | solenoidal, irrotational |
D. | divergent, rotational |
Answer» C. solenoidal, irrotational |
16. |
Curl is defined as the angular velocity at every point of the vector field. State True/False. |
A. | true |
B. | false |
Answer» A. true |
17. |
The curl of curl of a vector is given by, |
A. | div(grad v) – (del)2v |
B. | grad(div v) – (del)2v |
C. | (del)2v – div(grad v) |
D. | (del)2v – grad(div v) |
Answer» B. grad(div v) – (del)2v |
18. |
Which of the following theorem use the curl operation? |
A. | green’s theorem |
B. | gauss divergence theorem |
C. | stoke’s theorem |
D. | maxwell equation |
Answer» C. stoke’s theorem |
19. |
The curl of a curl of a vector gives a |
A. | scalar |
B. | vector |
C. | zero value |
D. | non zero value |
Answer» B. vector |
20. |
Is the vector is irrotational. E = yz i + xz j + xy k |
A. | yes |
B. | no |
Answer» A. yes |
21. |
Find the curl of A = (y cos ax)i + (y + ex)k |
A. | 2i – ex j – cos ax k |
B. | i – ex j – cos ax k |
C. | 2i – ex j + cos ax k |
D. | i – ex j + cos ax k |
Answer» B. i – ex j – cos ax k |
22. |
Find the curl of the vector A = yz i + 4xy j + y k |
A. | xi + j + (4y – z)k |
B. | xi + yj + (z – 4y)k |
C. | i + j + (4y – z)k |
D. | i + yj + (4y – z)k |
Answer» D. i + yj + (4y – z)k |
23. |
Curl cannot be employed in which one of the following? |
A. | directional coupler |
B. | magic tee |
C. | isolator and terminator |
D. | waveguides |
Answer» D. waveguides |
24. |
Which of the following Maxwell equations use curl operation? |
A. | maxwell 1st and 2nd equation |
B. | maxwell 3rd and 4th equation |
C. | all the four equations |
D. | none of the equations |
Answer» A. maxwell 1st and 2nd equation |
25. |
The integral form of potential and field relation is given by line integral. State True/False |
A. | true |
B. | false |
Answer» A. true |
26. |
If V = 2x2y – 5z, find its electric field at point (-4,3,6) |
A. | 47.905 |
B. | 57.905 |
C. | 67.905 |
D. | 77.905 |
Answer» B. 57.905 |
27. |
Find the potential between a(-7,2,1) and b(4,1,2). Given E = (-6y/x2 )i + ( 6/x) j + 5 k. |
A. | -8.014 |
B. | -8.114 |
C. | -8.214 |
D. | -8.314 |
Answer» C. -8.214 |
28. |
A field in which a test charge around any closed surface in static path is zero is called |
A. | solenoidal |
B. | rotational |
C. | irrotational |
D. | conservative |
Answer» D. conservative |
29. |
The potential in a lamellar field is |
A. | 1 |
B. | 0 |
C. | -1 |
D. | ∞ |
Answer» B. 0 |
30. |
Line integral is used to calculate |
A. | force |
B. | area |
C. | volume |
D. | length |
Answer» D. length |
31. |
The energy stored in the inductor 100mH with a current of 2A is |
A. | 0.2 |
B. | 0.4 |
C. | 0.6 |
D. | 0.8 |
Answer» A. 0.2 |
32. |
Gauss law for electric field uses surface integral. State True/False |
A. | true |
B. | false |
Answer» A. true |
33. |
Surface integral is used to compute |
A. | surface |
B. | area |
C. | volume |
D. | density |
Answer» B. area |
34. |
Coulomb’s law can be derived from Gauss law. State True/ False |
A. | true |
B. | false |
Answer» A. true |
35. |
Evaluate Gauss law for D = 5r2/4 i in spherical coordinates with r = 4m and θ = π/2. |
A. | 600 |
B. | 599.8 |
C. | 588.9 |
D. | 577.8 |
Answer» C. 588.9 |
36. |
The ultimate result of the divergence theorem evaluates which one of the following? |
A. | field intensity |
B. | field density |
C. | potential |
D. | charge and flux |
Answer» D. charge and flux |
37. |
The divergence theorem converts |
A. | line to surface integral |
B. | surface to volume integral |
C. | volume to line integral |
D. | surface to line integral |
Answer» B. surface to volume integral |
38. |
The triple integral is used to compute volume. State True/False |
A. | true |
B. | false |
Answer» A. true |
39. |
The volume integral is three dimensional. State True/False |
A. | true |
B. | false |
Answer» A. true |
40. |
Using volume integral, which quantity can be calculated? |
A. | area of cube |
B. | area of cuboid |
C. | volume of cube |
D. | distance of vector |
Answer» C. volume of cube |
41. |
Gauss theorem uses which of the following operations? |
A. | gradient |
B. | curl |
C. | divergence |
D. | laplacian |
Answer» C. divergence |
42. |
The Gauss divergence theorem converts |
A. | line to surface integral |
B. | line to volume integral |
C. | surface to line integral |
D. | surface to volume integral |
Answer» D. surface to volume integral |
43. |
Find the divergence theorem value for the function given by (ez, sin x, y2) |
A. | 1 |
B. | 0 |
C. | -1 |
D. | 2 |
Answer» B. 0 |
44. |
Divergence theorem computes to zero for a solenoidal function. State True/False. |
A. | true |
B. | false |
Answer» A. true |
45. |
Coulomb is the unit of which quantity? |
A. | field strength |
B. | charge |
C. | permittivity |
D. | force |
Answer» B. charge |
46. |
Coulomb law is employed in |
A. | electrostatics |
B. | magnetostatics |
C. | electromagnetics |
D. | maxwell theory |
Answer» A. electrostatics |
47. |
Find the force between 2C and -1C separated by a distance 1m in air(in newton). |
A. | 18 x 106 |
B. | -18 x 106 |
C. | 18 x 10-6 |
D. | -18 x 10-6 |
Answer» B. -18 x 106 |
48. |
Two charges 1C and -4C exists in air. What is the direction of force? |
A. | away from 1c |
B. | away from -4c |
C. | from 1c to -4c |
D. | from -4c to 1c |
Answer» C. from 1c to -4c |
49. |
The Coulomb law is an implication of which law? |
A. | ampere law |
B. | gauss law |
C. | biot savart law |
D. | lenz law |
Answer» B. gauss law |
50. |
For a charge Q1, the effect of charge Q2 on Q1 will be, |
A. | f1 = f2 |
B. | f1 = -f2 |
C. | f1 = f2 = 0 |
D. | f1 and f2 are not equal |
Answer» B. f1 = -f2 |
Done Studing? Take A Test.
Great job completing your study session! Now it's time to put your knowledge to the test. Challenge yourself, see how much you've learned, and identify areas for improvement. Don’t worry, this is all part of the journey to mastery. Ready for the next step? Take a quiz to solidify what you've just studied.