McqMate
These multiple-choice questions (MCQs) are designed to enhance your knowledge and understanding in the following areas: Bachelor of Science in Computer Science (BSc CS) .
1. |
What is E(ax+b)? |
A. | ax+b, |
B. | ax, |
C. | aE(x), |
D. | aE(x)+b |
Answer» D. aE(x)+b |
2. |
Write mean in term of moments? |
A. | µ1’, |
B. | µ2’, |
C. | µ2’- µ1’, |
D. | ( µ1’)2 |
Answer» A. µ1’, |
3. |
V(ax+b)= ……………….. |
A. | ax+b, |
B. | aV(x)+b, |
C. | a2V(x)+b, |
D. | a2V(x) |
Answer» D. a2V(x) |
4. |
The scatterness of observation is called …………… |
A. | Skewness, |
B. | Kurtosis, |
C. | Dispersion, |
D. | Mean |
Answer» C. Dispersion, |
5. |
For leptokurtic distribution |
A. | β2 < 3, |
B. | β2 > 3, |
C. | β2= 3, |
D. | β2= 0 |
Answer» B. β2 > 3, |
6. |
Any measure calculated on the basis of population value is called ……… |
A. | Parameter, |
B. | Statistic, |
C. | Sample, |
D. | Distribution |
Answer» A. Parameter, |
7. |
Give the suitable expression for E(x-c)2 |
A. | E(x2)-C2, |
B. | (E(x)-E(c))2, |
C. | V(x) + (E(x)-C)2, |
D. | V(x2)-C2 |
Answer» C. V(x) + (E(x)-C)2, |
8. |
The degree of relation between two variable is called |
A. | Correlation |
B. | Regression |
C. | Correlation Coefficient |
Answer» A. Correlation |
9. |
Correlation coefficient lies between ………… |
A. | 0 & 1, |
B. | -1 & 1, |
C. | -1 & 0, |
D. | -∞ & ∞ |
Answer» B. -1 & 1, |
10. |
If there is no relation between two variables correlation is called ………… |
A. | Positive, |
B. | Zero, |
C. | Negative, |
D. | Normal |
Answer» B. Zero, |
11. |
What is the maximum value of probability? |
A. | 1 |
B. | zero |
C. | -1 |
D. | 2 |
Answer» A. 1 |
12. |
P (AUB) =? |
A. | P(A)+P(B) |
B. | P(A) U P(B) |
C. | P(A) - P(B) |
D. | P(A)+P(B)-P(A∩B) |
Answer» D. P(A)+P(B)-P(A∩B) |
13. |
In which distribution means variance coincide? |
A. | Binomial |
B. | Poisson |
C. | Uniform |
D. | Normal |
Answer» B. Poisson |
14. |
Binomial distribution is a ______ distribution? |
A. | Discrete |
B. | Continuous |
C. | Bivariate |
Answer» A. Discrete |
15. |
_____ distribution is a limiting case of binomial? |
A. | Normal |
B. | Poisson |
C. | Uniform |
D. | Gamma |
Answer» B. Poisson |
16. |
What is the mean of the binomial distribution? |
A. | n |
B. | p |
C. | np |
D. | npq |
Answer» C. np |
17. |
If A & B are independent events which of the following are true |
A. | P(AUB)=P(A)+P(B) |
B. | P(A∩B)=P(A).P(B) |
C. | P(A/B)=P(A)/P(B) |
D. | P(A-B)=P(A)-P(B) |
Answer» B. P(A∩B)=P(A).P(B) |
18. |
What is the MGF of Normal distribution? |
A. | (q+pet)n |
B. | e(et-1) |
C. | npq |
D. | eµt + t2 Ϭ2/2 |
Answer» D. eµt + t2 Ϭ2/2 |
19. |
Find variance in terms of moments? |
A. | µ2! , |
B. | µ1! , |
C. | (µ1!)2 |
D. | µ2! - (µ1!)2 |
Answer» D. µ2! - (µ1!)2 |
20. |
If mean=median=mode in a distribution then which is called____________? |
A. | Binomial |
B. | Normal |
C. | Poisson |
D. | Uniform |
Answer» B. Normal |
21. |
The degree to which numerical data tend to spread about an average value is |
A. | Mean, |
B. | Average, |
C. | Dispersion, |
D. | Mode |
Answer» C. Dispersion, |
22. |
____________ =Q3-Q1/2 |
A. | skewness, |
B. | Quartile deviation, |
C. | Mean deviation, |
D. | Range |
Answer» B. Quartile deviation, |
23. |
Mean deviation is least when calculated from ________________ |
A. | Mean, |
B. | Median, |
C. | Mode, |
D. | S.D |
Answer» B. Median, |
24. |
If the varience is 256, then S.D is |
A. | 16, |
B. | 4, |
C. | 2, |
D. | 512 |
Answer» A. 16, |
25. |
S.D is a measure of ____________dispersion |
A. | Relative, |
B. | absolute, |
C. | Negative, |
D. | None of these |
Answer» B. absolute, |
26. |
In a symmetrical distribution quartiles are equidistant from____________ |
A. | Mean, |
B. | Median, |
C. | Mode, |
D. | S.D |
Answer» B. Median, |
27. |
In a negatively skewed distribution, |
A. | Mean=Median=Mode, |
B. | Mode<Median<Mode, |
C. | Mode<Median<Mean, |
D. | Mean<Median<Mode |
Answer» D. Mean<Median<Mode |
28. |
Karl Pearson coefficient of skewness does not depend on |
A. | Mean, |
B. | Median, |
C. | Mode, |
D. | First quartile |
Answer» D. First quartile |
29. |
In a Binomial distribution varience is 4/3 and p(success) is 1/3 find mean? |
A. | 2, |
B. | 4, |
C. | 6, |
D. | 8 |
Answer» A. 2, |
30. |
Find the varience of the binomial distribution whose mgf is (0.4et+0.6)8 |
A. | 1.92, |
B. | 0.92, |
C. | 0.24, |
D. | 7.86 |
Answer» A. 1.92, |
31. |
The standard deviation of the sampling distribution of a statistic is called |
A. | Standard error, |
B. | error, |
C. | population deviation, |
D. | population error |
Answer» A. Standard error, |
32. |
What is the standard error of x? |
A. | Ϭ, |
B. | Ϭ2 |
C. | Ϭ/√n |
D. | Ϭ2/n |
Answer» C. Ϭ/√n |
33. |
What is the necessary condition for an estimator‘t’ is unbiased |
A. | t=0, |
B. | E(t)=0, |
C. | E(t)= ɵ, |
D. | t= ɵ |
Answer» C. E(t)= ɵ, |
34. |
What is the condition that t1 is more efficient than t2 |
A. | t1<t2, |
B. | E (t1) <E (t2), |
C. | V (t1) < V (t2), |
D. | t1>t2) |
Answer» C. V (t1) < V (t2), |
35. |
The Rejected region in a statistical test is called ------------------------------ |
A. | First type |
B. | Second type |
C. | critical |
D. | none of these |
Answer» C. critical |
36. |
The estimator tn of parameter ɵ is consistent if tn converges to…………….. in probability |
A. | ɵ2, |
B. | ɵ, |
C. | 0, |
D. | 1 |
Answer» B. ɵ, |
37. |
A consistent estimator is unbiased if |
A. | Small sample, |
B. | large sample, |
C. | finite sample , |
D. | countable sample |
Answer» B. large sample, |
38. |
(V (t1) / V (t2) ) is called…………………… |
A. | relative efficiency of t1 w.r.to t2 |
B. | relative efficiency of t2 w.r.to t1 |
C. | relative sufficiency of t1 w.r.to t2 |
D. | relative sufficiency of t2 w.r.to t1 |
Answer» B. relative efficiency of t2 w.r.to t1 |
39. |
the hypothesis against the null hypothesis is called --------------------- |
A. | zero |
B. | test |
C. | alternate |
D. | none of these |
Answer» C. alternate |
40. |
probability of the test static falling in the critical region is called ----------- |
A. | significance |
B. | rejected |
C. | statistical |
D. | none of these |
Answer» A. significance |
41. |
In a normal distribution with mean µ and variance 1, t=1/nxi 2 is an unbiased estimator of ____________? |
A. | Ø |
B. | µ |
C. | µ2 |
D. | µ2+1 |
Answer» D. µ2+1 |
42. |
Sample mean is the consistent estimator of _____________? |
A. | population mean |
B. | Sample variance |
C. | Population variance |
D. | S.D |
Answer» A. population mean |
43. |
If ‘t’ is consistent estimator of Q ,Then t2 is the consistent estimator of __________ ? |
A. | Q |
B. | Q2 |
Answer» B. Q2 |
44. |
For the population f(x,µ)=1/ 2) |
A. | Sample mean is not a consistent estimator, but sample median is a consistent estimator |
B. | Sample median is not a consistent estimator, but sample mean is a consistent estimator |
C. | Sample variance is not a consistent estimator, but population variance is a consistent estimator |
D. | Sample variance is a consistent estimator, but population variance is not a consistent estimator |
Answer» A. Sample mean is not a consistent estimator, but sample median is a consistent estimator |
45. |
The kurtosis ᵝ2 =__________? |
A. | µ4/µ2 |
B. | µ4/µ1 |
C. | µ4/µ22 |
D. | µ4/µ12 |
Answer» C. µ4/µ22 |
46. |
At t=0,Mx (t)=___________? |
A. | zero |
B. | 1 |
C. | -1 |
D. | 2 |
Answer» B. 1 |
47. |
Which distribution is limiting case of binomial distribution as n->∞,p->0 |
A. | Poisson |
B. | normal |
C. | uniform |
D. | gamma |
Answer» A. Poisson |
48. |
In which distribution Mean=Median=Mode? |
A. | Poisson |
B. | normal |
C. | uniform |
D. | gamma |
Answer» B. normal |
49. |
Variance of k, where k is a constant is |
A. | k2 |
B. | k |
C. | zero |
D. | 1 |
Answer» C. zero |
50. |
Expectation of a constant k is |
A. | zero |
B. | 1 |
C. | k |
D. | k2 |
Answer» C. k |
Done Studing? Take A Test.
Great job completing your study session! Now it's time to put your knowledge to the test. Challenge yourself, see how much you've learned, and identify areas for improvement. Don’t worry, this is all part of the journey to mastery. Ready for the next step? Take a quiz to solidify what you've just studied.