Discrete Mathematics Solved MCQs

1.

A _______ is an ordered collection of objects.

A. relation
B. function
C. set
D. proposition
Answer» C. set
2.

Power set of empty set has exactly _____ subset.

A. one
B. two
C. zero
D. three
Answer» A. one
3.

The set O of odd positive integers less than 10 can be expressed by ___________

A. {1, 2, 3}
B. {1, 3, 5, 7, 9}
C. {1, 2, 5, 9}
D. {1, 5, 7, 9, 11}
Answer» B. {1, 3, 5, 7, 9}
4.

What is the cardinality of the set of odd positive integers less than 10?

A. 10
B. 5
C. 3
D. 20
Answer» B. 5
5.

Which of the following two sets are equal?

A. a = {1, 2} and b = {1}
B. a = {1, 2} and b = {1, 2, 3}
C. a = {1, 2, 3} and b = {2, 1, 3}
D. a = {1, 2, 4} and b = {1, 2, 3}
Answer» C. a = {1, 2, 3} and b = {2, 1, 3}
6.

The set of positive integers is ________.

A. infinite
B. finite
C. subset
D. empty
Answer» A. infinite
7.

What is the Cardinality of the Power set of the set {0, 1, 2}.

A. 8
B. 6
C. 7
D. 9
Answer» A. 8
8.

The members of the set S = {x x is the square of an integer and x < 100} is _________________.

A. {0, 2, 4, 5, 9, 58, 49, 56, 99, 12}
B. {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
C. {1, 4, 9, 16, 25, 36, 64, 81, 85, 99}
D. {0, 1, 4, 9, 16, 25, 36, 49, 64, 121}
Answer» B. {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
9.

The union of the sets {1, 2, 5} and {1, 2, 6} is the set _______________.

A. {1, 2, 6, 1}
B. {1, 2, 5, 6}
C. {1, 2, 1, 2}
D. {1, 5, 6, 3}
Answer» B. {1, 2, 5, 6}
10.

The intersection of the sets {1, 2, 5} and {1, 2, 6} is the set ___________.

A. {1, 2}
B. {5, 6}
C. {2, 5}
D. {1, 6}
Answer» A. {1, 2}
11.

Two sets are called disjoint if there _____________ is the empty set.

A. union complement
B. difference
C. intersection
D. complement
Answer» C. intersection
12.

Which of the following two sets are disjoint?

A. {1, 3, 5} and {1, 3, 6}
B. {1, 2, 3} and {1, 2, 3}
C. {1, 3, 5} and {2, 3, 4}
D. {1, 3, 5} and {2, 4, 6}
Answer» D. {1, 3, 5} and {2, 4, 6}
13.

The difference of {1, 2, 3} and {1, 2, 5} is the set _________.

A. {1}
B. {5}
C. {3}
D. {2}
Answer» C. {3}
14.

The complement of the set A is _____________.

A. a – b
B. u – a
C. a – u
D. b – a
Answer» B. u – a
15.

The bit strings for the sets are 1111100000 and 1010101010. The union of these sets is ____________.

A. 1010100000
B. 1010101101
C. 1111111100
D. 1111101010
Answer» D. 1111101010
16.

The set difference of the set A with null set is ________.

A. A
B. null
C. U
D. B
Answer» A. A
17.

If A = {a,b,{a,c}, ∅}, then A - {a,c} is

A. {a, b, ∅}
B. {b, {a, c}, ∅}
C. {c, {b, c}}
D. {b, {a, c}, ∅}
Answer» A. {a, b, ∅}
18.

The set (A - B) – C is equal to the set

A. (a – b) ∩ c
B. (a∪ b) – c
C. (a – b) ∪ c
D. (a ∪ b) – c
Answer» D. (a ∪ b) – c
19.

Among the integers 1 to 300, the number of integers which are divisible by 3 or 5 is

A. 100
B. 120
C. 130
D. 140
Answer» D. 140
20.

Using Induction Principle if 13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, then

A. 43= 15 + 17 + 19 + 21
B. 43= 11 + 13 + 15 + 17 + 19
C. 43 = 13 + 15 + 17 + 19
D. 43 = 13 + 15 + 17 + 19 + 21
Answer» C. 43 = 13 + 15 + 17 + 19
21.

By mathematical Induction 2n> n3

A. for n ≥ 1
B. for n ≥ 4
C. for n ≥ 5
D. for n ≥ 10
Answer» D. for n ≥ 10
22.

The symmetric difference A ⊕ B is the set

A. a – a ∩ b
B. (a∪ b) – (a∩ b)
C. (a – b) ∩ (b – a)
D. a ∪ (b – a)
Answer» B. (a∪ b) – (a∩ b)
23.

If A is the set of students who play crocket, B is the set of students who play football then the set of students who play either football or cricket, but not both, can be symbolically depicted as the set

A. a ⊕ b
B. a ∪ b
C. a – b
D. a ∩ b
Answer» A. a ⊕ b
24.

Let A and B be two sets in the same universal set. Then A – B =

A. a  b
B. a b
C. a  b
D. none of these
Answer» C. a  b
25.

The number of subsets of a set containing n elements is

A. n
B. 2n - 1
C. n2
D. 2n
Answer» D. 2n
Tags
Question and answers in Discrete Mathematics, Discrete Mathematics multiple choice questions and answers, Discrete Mathematics Important MCQs, Solved MCQs for Discrete Mathematics, Discrete Mathematics MCQs with answers PDF download

We need your help!

We're developing a website for study materials for students.
We would love to hear your answers to some of the questions.

Take Survey