McqMate

59

55.6k

1. |
## Logic is the ……………………………………….. |

A. | science of reasoning |

B. | science of beauty |

C. | science of morality |

D. | science of astronomy |

Answer» A. science of reasoning |

2. |
## The proposition arrived at on the basis of proposition or propositions in an argument, is called…………………………….. |

A. | premise |

B. | modus ponens |

C. | conclusion |

D. | modus tollens |

Answer» C. conclusion |

3. |
## The proposition or propositions on the basis of which the conclusion is arrived at in an argument is called ………………………….. |

A. | syllogism or syllogisms |

B. | dilemma |

C. | premise or premises |

D. | disjunctive syllogism |

Answer» C. premise or premises |

4. |
## Premises and conclusion are……………………………. |

A. | valid or invalid |

B. | sound or unsound |

C. | valid or sound |

D. | true or false |

Answer» D. true or false |

5. |
## Deductive argument is characterized as……………………………. |

A. | true or false |

B. | inductive |

C. | valid or invalid |

D. | materially true or materially false |

Answer» C. valid or invalid |

6. |
## Validity of deductive argument depends on…………………………………… |

A. | form of argument |

B. | matter of argument |

C. | both form and matter |

D. | truth of premises and conclusion |

Answer» A. form of argument |

7. |
## ……………………………………………….reveals the form of argument |

A. | truth or falsity of propositions |

B. | use of symbols |

C. | true premises |

D. | true conclusion |

Answer» B. use of symbols |

8. |
## In the history of logic, …………….………………….are two important stages of development. |

A. | classical logic and symbolic logic |

B. | scientific and artistic |

C. | aesthetical and ethical |

D. | valid and invalid |

Answer» A. classical logic and symbolic logic |

9. |
## Classical logic is also called ……………………………………… |

A. | symbolic logic |

B. | mathematical logic |

C. | modern logic |

D. | ancient logic |

Answer» D. ancient logic |

10. |
## Ancient logic is also called………………………………………….. |

A. | symbolic logic |

B. | mathematical logic |

C. | modern logic |

D. | traditional logic |

Answer» D. traditional logic |

11. |
## Symbolic logic is also called……………………………………. |

A. | traditional logic |

B. | ancient logic |

C. | material logic |

D. | mathematical logic |

Answer» D. mathematical logic |

12. |
## Mathematical logic is also called……………………………………. |

A. | traditional logic |

B. | ancient logic |

C. | material logic |

D. | modern logic |

Answer» D. modern logic |

13. |
## Symbolic logic originated in connection with |

A. | mathematical theory |

B. | inductive method |

C. | evolution theory |

D. | economic theory |

Answer» A. mathematical theory |

14. |
## Classical logic is related to symbolic logic as |

A. | sound to unsound |

B. | embryo to adult organism |

C. | valid to invalid |

D. | true to false |

Answer» B. embryo to adult organism |

15. |
## …………………had introduced into logic the important notion of a variable |

A. | thales |

B. | socrates |

C. | aristotle |

D. | bacon |

Answer» C. aristotle |

16. |
## ………………………….is a symbol which can stand for any one of a given range of values |

A. | a logical constant |

B. | a modifier |

C. | a logical connective |

D. | a variable |

Answer» D. a variable |

17. |
## The development of symbolic logic has been bound up with the development of ……………………… |

A. | physics |

B. | mathematics |

C. | chemistry |

D. | biology |

Answer» B. mathematics |

18. |
## In 1910, in collaboration with A.N.Whitehead, Russell published ……………………., a monumental work in which a system of symbolic logic is elaborated and made to serve as the foundation of the whole of mathematics |

A. | ideas |

B. | cartesian meditations |

C. | the mathematical analysis of logic |

D. | principia mathematica |

Answer» D. principia mathematica |

19. |
## …………………………………………………….. is the form of the argument |

A. | the structure or pattern of the argument |

B. | the subject matter with which the argument deals |

C. | the truth or falsity of propositions |

D. | the material truth of premises and conclusion |

Answer» A. the structure or pattern of the argument |

20. |
## A simple proposition is …………………………………………………………………. |

A. | a general proposition |

B. | one which contains other proposition as it’s component |

C. | one which does not contain any other proposition as it’s component |

D. | a molecular proposition |

Answer» C. one which does not contain any other proposition as it’s component |

21. |
## A compound proposition is ……………………………………………………………. |

A. | an atomic proposition |

B. | a general proposition |

C. | one which does not contain any otherproposition as it’s component |

D. | one which contains other proposition as it’s component |

Answer» D. one which contains other proposition as it’s component |

22. |
## Conjunction is a compound proposition in which the word ………… is used to connect simple statements. |

A. | ‘not” |

B. | ’unless’ |

C. | ‘or’ |

D. | “and” |

Answer» D. “and” |

23. |
## ‘Ramesh is either intelligent or hard working’ is an example of ………………………… |

A. | negation |

B. | conjunction |

C. | disjunction |

D. | implication |

Answer» C. disjunction |

24. |
## “If it rains, then the road will be wet” is an example for………………………………………. |

A. | conjunction |

B. | negation |

C. | implication |

D. | disjunction |

Answer» C. implication |

25. |
## A general proposition is ………………………………… |

A. | a quantified statement |

B. | a molecular proposition |

C. | a compound statement |

D. | an atomic proposition |

Answer» A. a quantified statement |

26. |
## ‘All Keralites are Indians’ is an example for ………………………………………….. |

A. | universal negative proposition |

B. | particular affirmative proposition |

C. | particular negative proposition |

D. | universal affirmative proposition |

Answer» D. universal affirmative proposition |

27. |
## ‘ Some fruits are sweet’ is an example for………………………………………. |

A. | universal negative proposition |

B. | particular affirmative proposition |

C. | particular negative proposition |

D. | universal affirmative proposition |

Answer» B. particular affirmative proposition |

28. |
## ’ Some flowers are not red’ is an example for……………………………………….. |

A. | particular affirmative proposition |

B. | universal affirmative proposition |

C. | particular negative proposition |

D. | universal negative proposition |

Answer» C. particular negative proposition |

29. |
## ‘ No birds are fishes’ is an example for …………………………………………… |

A. | particular affirmative proposition |

B. | particular negative proposition |

C. | universal negative proposition |

D. | universal affirmative proposition |

Answer» C. universal negative proposition |

30. |
## Singly general proposition is a general proposition with ……………………………….. |

A. | no quantifier |

B. | one quantifier |

C. | one singular proposition |

D. | two or more quantifiers |

Answer» B. one quantifier |

31. |
## Multiply general proposition is a general proposition with …………………………….. |

A. | one quantifier |

B. | no quantifier |

C. | two or more quantifiers |

D. | two or more singular propositions |

Answer» C. two or more quantifiers |

32. |
## …………………………..is a branch of Symbolic Logic |

A. | classical logic |

B. | traditional logic |

C. | propositional logic |

D. | mathematical logic |

Answer» C. propositional logic |

33. |
## Quantification logic is also called……………………………………… |

A. | propositional logic |

B. | predicate logic |

C. | classical logic |

D. | ancient logic |

Answer» B. predicate logic |

34. |
## ………………………………….analyses the internal structure of propositions |

A. | propositional logic |

B. | truth functional logic |

C. | sentential logic |

D. | predicate logic |

Answer» D. predicate logic |

35. |
## ……………………………………. does not analyse the internal structure of propositions |

A. | quantification logic |

B. | predicate logic |

C. | propositional logic |

D. | truth functional logic |

Answer» C. propositional logic |

36. |
## The two types of statements dealt within propositional logic are …………………… |

A. | singular and general statements |

B. | universal affirmative and universal negative statements |

C. | particular affirmative and particular negative statements |

D. | simple and compound statements. |

Answer» D. simple and compound statements. |

37. |
## In a conditional, the component statement that follows the “if” is called …………… |

A. | the “consequent” |

B. | the “antecedent” |

C. | the “conjunct” |

D. | the “disjunct” |

Answer» B. the “antecedent” |

38. |
## In a conditional, the component statement that follows the “then” is called ………. |

A. | the “antecedent” |

B. | the “consequent” |

C. | the “disjunct” |

D. | the “conjunct” |

Answer» B. the “consequent” |

39. |
## The two component statements of conjunction are called…………………………….. |

A. | the “antecedents” |

B. | ”disjuncts” |

C. | “conjuncts” |

D. | the “consequents” |

Answer» C. “conjuncts” |

40. |
## The two component statements of disjunction are called ………………………………. |

A. | ” conjuncts” |

B. | the “consequents” |

C. | “disjuncts” |

D. | the “antecedents” |

Answer» C. “disjuncts” |

41. |
## When two statements are combined by using the phrase “if and only if”, the resulting compound statement is called ………………………………………….. |

A. | conditional statement |

B. | bi-conditional statement |

C. | disjunctive statement |

D. | conjunctive statement |

Answer» B. bi-conditional statement |

42. |
## Bi-conditional statement is also called …………………. |

A. | implication |

B. | logical equivalence |

C. | material implication |

D. | material equivalence |

Answer» D. material equivalence |

43. |
## Conditional statement is also called…………………………………. |

A. | implication |

B. | material equivalence |

C. | logical equivalence |

D. | conjunction |

Answer» A. implication |

44. |
## The phrase “if and only if” is used to express………………………………………………………. |

A. | sufficient condition |

B. | both sufficient and necessary condition |

C. | necessary condition |

D. | no condition |

Answer» B. both sufficient and necessary condition |

45. |
## A compound proposition whose truth-value is completely determined by the truth-values of it’s component statements is called ……………………. |

A. | bi -conditional |

B. | non- truth-functional |

C. | conditional |

D. | truth-functional |

Answer» D. truth-functional |

46. |
## ………………………….. Symbol is used for conjunction |

A. | the dot “.” |

B. | the tilde “ ~ ” |

C. | the vel ”v” |

D. | the horse shoe” Ͻ” |

Answer» A. the dot “.” |

47. |
## ………………………….. Symbol is used for weak disjunction |

A. | the vel ”v” |

B. | the dot “.” |

C. | the horse shoe” Ͻ” |

D. | the tilde “ ~ ” 48. ………………………….. symbol is used for negation |

Answer» A. the vel ”v” |

48. |
## …………………………..Symbol is used for bi –conditional |

A. | the tilde “ ~ ” |

B. | ”v” |

C. | ” Ͻ” |

D. | “ ≡ “ |

Answer» D. “ ≡ “ |

49. |
## A conjunction is true if and only if ………………………………………. |

A. | at least one conjunct is true |

B. | both of it’s conjuncts are true |

C. | both conjuncts are false |

D. | none of the above |

Answer» B. both of it’s conjuncts are true |

50. |
## Inclusive or weak disjunction is false only in case ………………………………………………. |

A. | both of it’s disjuncts are false |

B. | at least one disjunct is false |

C. | both disjuncts are true |

D. | none of the above |

Answer» A. both of it’s disjuncts are false |

51. |
## The dot “ . ”symbol is…………………………………….. |

A. | a truth-functional operator |

B. | a statement variable |

C. | propositional function |

D. | a truth-functional connective |

Answer» D. a truth-functional connective |

52. |
## The curl “ ̴“ is …………………………………………………….. |

A. | propositional function |

B. | a statement variable |

C. | a truth-functional connective |

D. | a truth-functional operator |

Answer» D. a truth-functional operator |

53. |
## Gopal is either intelligent or hard working’ is an example for ………………………… |

A. | bi-conditional |

B. | implication |

C. | inclusive or weak disjunction |

D. | exclusive or strong disjunction |

Answer» C. inclusive or weak disjunction |

54. |
## ‘Today is Thursday or Saturday’ is an example for……………………………….. |

A. | implication |

B. | exclusive disjunction |

C. | inclusive disjunction |

D. | bi conditional |

Answer» B. exclusive disjunction |

55. |
## ’If you study well, then you will pass the examination’ is an example for …………… |

A. | implication |

B. | bi-conditional |

C. | disjunction |

D. | conjunction |

Answer» A. implication |

56. |
## A conditional statement asserts that in any case in which it’s antecedent is true, it’s consequent is …………………………… |

A. | not true |

B. | true or false |

C. | false |

D. | true also |

Answer» D. true also |

57. |
## For a conditional to be true the conjunction “ p. ̴q “ must be ………………. |

A. | true or false |

B. | true |

C. | false |

D. | undetermined. |

Answer» C. false |

58. |
## ……………………….. is regarded the common meaning that is part of the meaning of all four different types of implication symbolized as “ If p , then q” |

A. | ̴p . q |

B. | ̴p . ̴q |

C. | ̴( p . ̴q ) |

D. | p . ̴q |

Answer» C. ̴( p . ̴q ) |

59. |
## No real connection between antecedent and consequent is suggested by ………… |

A. | decisional implication |

B. | material implication |

C. | causal implication |

D. | definitional implication |

Answer» B. material implication |

60. |
## “it is not the case that the antecedent is true and the consequent is false” is symbolized as………………………………………. |

A. | ̴( p . ̴q ) |

B. | p . ̴q |

C. | ̴p . ̴q |

D. | ̴p . q |

Answer» A. ̴( p . ̴q ) |

61. |
## ‘ q if p ‘ is symbolized as………………………………. |

A. | ‘q Ͻ p’ |

B. | ‘p ≡ q’ |

C. | ‘p v q’ |

D. | ’ p Ͻ q ‘ |

Answer» D. ’ p Ͻ q ‘ |

62. |
## ’ The conjunction of p with the disjunction of q with r’, is symbolized as ……. |

A. | ( p vq ) . r |

B. | ( p . q ) v r |

C. | p . ( q v r ) |

D. | p v ( q . r ) |

Answer» C. p . ( q v r ) |

63. |
## ‘The disjunction whose first disjunct is the conjunction of p and q and whose second disjunct is r ‘ is symbolized as ……………………….. |

A. | p v ( q . r ) |

B. | ( p vq ) . r |

C. | p . ( q v r ) |

D. | ( p . q ) v r |

Answer» D. ( p . q ) v r |

64. |
## The negaton of A V B is symbolized as ……………… |

A. | ̴a v ̴b |

B. | ̴( a v b ) |

C. | ̴a v b |

D. | a v ̴b |

Answer» B. ̴( a v b ) |

65. |
## ‘ A and B will not both be selected ’ is symbolized as ……………………….. |

A. | ̴( a . b ) |

B. | ̴a v b |

C. | a v ̴b |

D. | ̴a . ̴b |

Answer» A. ̴( a . b ) |

66. |
## Ramesh and Dinesh will both not be elected. |

A. | a v ̴b |

B. | ̴a . ̴b |

C. | ̴( a . b ) |

D. | ̴a v b |

Answer» B. ̴a . ̴b |

67. |
## An argument can be proved invalid by constructing another argument of the same form with ……………………. |

A. | false premises and false conclusion |

B. | true premises and false conclusion |

C. | true premises and true conclusion |

D. | false premises and true conclusion |

Answer» B. true premises and false conclusion |

68. |
## …………………………… can be defined as an array of symbols containing statement variables but no statements, such that when statements are substituted for statement variables- the same statement being substituted for the same statement variable throughout – the result is an argument |

A. | specific statement form |

B. | a statement form |

C. | an argument form |

D. | an argument |

Answer» C. an argument form |

69. |
## Any argument that results from the substitution of statements for statement variables in an argument form is called ……………………………… |

A. | invalid argument |

B. | valid argument |

C. | the specific form |

D. | a “ substitution instance” of that argument form |

Answer» D. a “ substitution instance” of that argument form |

70. |
## In case an argument is produced by substituting a different simple statement for each different statement variable in an argument form, that argument form is called …………………… |

A. | the “specific form” of that argument |

B. | a “ substitution instance” of that argument form |

C. | valid argument |

D. | invalid argument |

Answer» A. the “specific form” of that argument |

71. |
## If the specific form of a given argument has any substitution instance whose premises are true and whose conclusion is false, then the given argument is. |

A. | valid |

B. | invalid |

C. | valid or invalid |

D. | sound |

Answer» B. invalid |

72. |
## Refutation by logical analogy is based on the fact that any argument whose specific form is an invalid argument form is ……………………….. |

A. | sound |

B. | a contradiction |

C. | an invalid argument. |

D. | a valid argument |

Answer» C. an invalid argument. |

73. |
## ………………………… is any sequence of symbols containing statement variables but no statements, such that when statements are substituted for the statement\ variables-the same statement being substituted for the same statement variable throughout- the result is a statement |

A. | an argument form |

B. | specific form of argument |

C. | a statement form |

D. | argument |

Answer» C. a statement form |

74. |
## ’statement form from which the statement results by substituting a different simple statement for each different statement variable’ is called …………………….. |

A. | the specific form of a given argument |

B. | tautology |

C. | contradiction |

D. | the specific form of a given statement |

Answer» D. the specific form of a given statement |

75. |
## A statement form that has only true substitution instances is called …………………… |

A. | a “ tautologous statement form “ or a “ tautology” |

B. | a self-contradictory statement form or contradiction |

C. | a contingent statement form |

D. | specific statement form |

Answer» A. a “ tautologous statement form “ or a “ tautology” |

76. |
## Statement forms that have both true and false statements among their substitution instances are called …………………………………………….. |

A. | tautologous statement forms |

B. | contingent statement forms |

C. | self-contradictory statement forms |

D. | specific statement forms |

Answer» B. contingent statement forms |

77. |
## Two statements are ………………… when their material equivalence is a tautology |

A. | self-contradictory |

B. | contingent |

C. | logically equivalent |

D. | materially implying |

Answer» C. logically equivalent |

78. |
## …………………. statements have the same meaning and may be substituted for one another |

A. | materially equivalent |

B. | logically equivalent |

C. | tautologous |

D. | self-contradictory |

Answer» B. logically equivalent |

79. |
## . ̴( p . q) is logically equivalent to ………………………………….. |

A. | p v ̴q |

B. | ̴p . ̴q |

C. | ̴p v ̴q |

D. | ̴p v q |

Answer» C. ̴p v ̴q |

80. |
## An argument form is valid if and only if it’s expression in the form of a conditional statement is …………… |

A. | a contradiction |

B. | a biconditional |

C. | a tautology |

D. | material implication |

Answer» C. a tautology |

81. |
## “If a statement is true, then it is implied by any statement whatever” is symbolized as |

A. | p Ͻ (p Ͻ q) |

B. | p Ͻ (q Ͻ p) |

C. | ̴p Ͻ (p Ͻ q) |

D. | ̴p Ͻ (q Ͻ p) |

Answer» B. p Ͻ (q Ͻ p) |

82. |
## “ If a statement is false, then it implies any statement whatever” |

A. | ̴p Ͻ (p Ͻ q) |

B. | p Ͻ (p Ͻ q) |

C. | ̴p Ͻ (q Ͻ p) |

D. | p Ͻ (q Ͻ p) |

Answer» A. ̴p Ͻ (p Ͻ q) |

83. |
## ………………………… is defined as any argument that is a substitution instance of an elementary valid argument form |

A. | an elementary valid argument |

B. | formal proof |

C. | tautology |

D. | contradiction |

Answer» A. an elementary valid argument |

84. |
## Name the rule of inference ̴( P . Q) ≡ ( ̴P V ̴Q) |

A. | commutation ( com )- |

B. | association (assoc )- |

C. | de morgan’s theorem ( de m ) |

D. | distribution (dist ) |

Answer» C. de morgan’s theorem ( de m ) |

85. |
## Name the rule of inference ( p v q ) ≡ ( q v p ) |

A. | commutation ( com )- |

B. | de morgan’s theorem ( de m ) |

C. | distribution (dist ) |

D. | association (assoc )- |

Answer» A. commutation ( com )- |

86. |
## Name the rule of inference [ p v( q v r ) ] ≡ [ ( p v q ) v r ] |

A. | de morgan’s theorem ( de m ) |

B. | distribution (dist ) |

C. | association (assoc )- |

D. | commutation ( com )- 100. name the rule of inference |

Answer» C. association (assoc )- |

87. |
## Name the rule of inference P ≡ ̴ ̴p |

A. | transposition (trans )- |

B. | material implication (impl)- |

C. | double negation ( d .n )- |

D. | tautology ( taut )- |

Answer» C. double negation ( d .n )- |

88. |
## Name the rule of inference ( P Ͻ q ) ≡ ( ̴Q Ͻ ̴P ) |

A. | double negation ( d .n )- |

B. | tautology ( taut )- |

C. | transposition (trans )- |

D. | material equivalence ( equiv )- |

Answer» C. transposition (trans )- |

89. |
## Name the rule of inference ( P Ͻ q ) ≡ ( ̴P v q ) |

A. | material implication (impl)- |

B. | transposition (trans )- |

C. | material equivalence ( equiv )- |

D. | exportation ( e x p)- |

Answer» A. material implication (impl)- |

90. |
## Name the rule of inference ( P ≡ q ) ≡ [ ( p Ͻ q ) . ( q Ͻ p ) ] |

A. | material implication (impl)- |

B. | transposition (trans )- |

C. | tautology |

D. | material equivalence ( equiv )- 105. name the rule of inference |

Answer» D. material equivalence ( equiv )- 105. name the rule of inference |

91. |
## Name the rule of inference ̴( P V Q) ≡ ( ̴P . ̴Q ) |

A. | material implication (impl)- |

B. | de morgan’s theorems ( de m ) |

C. | exportation ( e x p)- |

D. | distribution (dist ) |

Answer» B. de morgan’s theorems ( de m ) |

92. |
## Name the rule of inference ( p . q ) ≡ ( q . p ) |

A. | commutation ( com )- |

B. | distribution (dist ) |

C. | exportation ( e x p)- |

D. | transposition (trans )- |

Answer» A. commutation ( com )- |

93. |
## Name the rule of inference [ p .( q . r ) ] ≡ [ ( p . q ) . r ] |

A. | exportation ( e x p)- |

B. | de morgan’s theorems ( de m ) |

C. | association (assoc )- |

D. | distribution (dist ) |

Answer» C. association (assoc )- |

94. |
## Name the rule of inference ( P ≡ q ) ≡ [ ( p . q ) v ( ̴P . ̴Q ) ] |

A. | exportation ( e x p)- |

B. | material equivalence ( equiv )- |

C. | distribution (dist ) |

D. | material implication (impl)- |

Answer» B. material equivalence ( equiv )- |

95. |
## Name the rule of inference p ≡ ( p . p ) |

A. | material implication (impl)- |

B. | commutation ( com )- |

C. | tautology ( taut )- |

D. | association (assoc )- |

Answer» C. tautology ( taut )- |

96. |
## ……………………………………. are defined as expressions which contain individual variables and become propositions when their individual variables are replaced by individual constants |

A. | truth-functions |

B. | propositional functions |

C. | quantifiers |

D. | statement variables |

Answer» B. propositional functions |

97. |
## The process of obtaining a proposition from a propositional function by substituting a constant for a variable is called ………………………………… |

A. | quantification |

B. | deduction |

C. | instantiation |

D. | generalization |

Answer» C. instantiation |

98. |
## General propositions can be regarded as resulting from propositional functions by a process called |

A. | instantiation |

B. | substitution |

C. | deduction |

D. | quantification |

Answer» D. quantification |

99. |
## The phrase ‘Given any x’ is called ……………………………………. |

A. | a propositional function |

B. | a universal quantifier |

C. | truth-function |

D. | an existential quantifier |

Answer» B. a universal quantifier |

100. |
## Universal quantifier is symbolized as ………… a) ‘(x)’ b) ′(∃x)’ c) ‘ X’ d) ‘ ∃x’ 116. The phrase ‘ there is at least one x such that’ is called ……………………………… |

A. | a universal quantifier |

B. | a propositional function |

C. | an existential quantifier |

D. | truth-function |

Answer» A. a universal quantifier |

Done Reading?

Tags

- Question and answers in Essentials of the Symbolic Logic,
- Essentials of the Symbolic Logic multiple choice questions and answers,
- Essentials of the Symbolic Logic Important MCQs,
- Solved MCQs for Essentials of the Symbolic Logic,
- Essentials of the Symbolic Logic MCQs with answers PDF download