

McqMate
These multiple-choice questions (MCQs) are designed to enhance your knowledge and understanding in the following areas: Bachelor of Arts in Philosophy (BA Philosophy) , Master of Arts in Philosophy (MA Philosophy) .
251. |
The rule of Hypothetical Syllogism ( H.S) is symbolized as |
A. | P Ͻ q |
B. | P Ͻ q |
C. | P Ͻ q |
D. | P Ͻ q |
Answer» B. P Ͻ q |
252. |
The rule of Absorption (Abs) is symbolized as |
A. | p.q |
B. | P Ͻ q |
C. | p |
D. | p |
Answer» B. P Ͻ q |
253. |
The rule of Simplification (Simp) is symbolized as |
A. | P Ͻ q |
B. | P . q |
C. | P |
D. | p |
Answer» B. P . q |
254. |
The rule of Addition is symbolized as |
A. | p |
B. | p |
C. | P |
D. | p . q |
Answer» C. P |
255. |
The rule of Conjunction (Conj) is symbolized as |
A. | p . q |
B. | p |
C. | p |
D. | P |
Answer» D. P |
256. |
Name the rule of inference P . Q) ≡ P V Q) |
A. | Commutation ( Com )- |
B. | Association (Assoc )- |
C. | De Morgan’s Theorem De M ) |
D. | Distribution Dist ) |
Answer» C. De Morgan’s Theorem De M ) |
257. |
Name the rule of inference p v q ) ≡ q v p ) |
A. | Commutation ( Com )- |
B. | De Morgan’s Theorem De M ) |
C. | Distribution (Dist ) |
D. | Association (Assoc )- |
Answer» A. Commutation ( Com )- |
258. |
Name the rule of inference [ p v q v r ) ] ≡ [ p v q ) v r ] |
A. | De Morgan’s Theorem De M ) |
B. | Distribution Dist ) |
C. | Association (Assoc )- |
D. | Commutation ( Com )- |
Answer» C. Association (Assoc )- |
259. |
Name the rule of inference [ p . q v r ) ] ≡ [ p . q ) v p. r) ] |
A. | Association (Assoc )- |
B. | Distribution (Dist ) |
C. | De Morgan’s Theorem De M ) |
D. | Commutation Com ) |
Answer» B. Distribution (Dist ) |
260. |
Name the rule of inference P ≡ p |
A. | Transposition (Trans )- |
B. | Material Implication (Impl)- |
C. | Double Negation ( D .N )- |
D. | Tautology ( Taut )- |
Answer» C. Double Negation ( D .N )- |
261. |
Name the rule of inference ( P Ͻ q ) ≡ Q Ͻ P ) |
A. | Double Negation ( D .N )- |
B. | Tautology ( Taut )- |
C. | Transposition (Trans )- |
D. | Material Equivalence ( Equiv )- |
Answer» C. Transposition (Trans )- |
262. |
Name the rule of inference ( P Ͻ q ) ≡ P v q ) |
A. | Material Implication (Impl)- |
B. | Transposition (Trans )- |
C. | Material Equivalence ( Equiv )- |
D. | Exportation ( E x p)- |
Answer» A. Material Implication (Impl)- |
263. |
Name the rule of inference P ≡ q ) ≡ [ p Ͻ q ) . ( q Ͻ p ) ] |
A. | Material Implication (Impl)- |
B. | Transposition (Trans )- |
C. | Tautology |
D. | Material Equivalence ( Equiv )- |
Answer» D. Material Equivalence ( Equiv )- |
264. |
Name the rule of inference [ (P . Q ) Ͻ r ) ] ≡ [ p Ͻ ( q Ͻ r ) ] |
A. | Transposition (Trans )- |
B. | Material Equivalence ( Equiv )- |
C. | Material Implication (Impl)- |
D. | Exportation ( E x p)- |
Answer» D. Exportation ( E x p)- |
265. |
Name the rule of inference P V Q) ≡ P . Q ) |
A. | Material Implication (Impl)- |
B. | De Morgan’s Theorems De M ) |
C. | Exportation ( E x p)- |
D. | Distribution (Dist ) |
Answer» B. De Morgan’s Theorems De M ) |
266. |
Name the rule of inference p . q ) ≡ q . p ) |
A. | Commutation ( Com )- |
B. | Distribution (Dist ) |
C. | Exportation ( E x p)- |
D. | Transposition (Trans )- |
Answer» A. Commutation ( Com )- |
267. |
Name the rule of inference [ p . q . r ) ] ≡ [ p . q ) . r ] |
A. | Exportation ( E x p)- |
B. | De Morgan’s Theorems De M ) |
C. | Association (Assoc )- |
D. | Distribution (Dist ) |
Answer» C. Association (Assoc )- |
268. |
Name the rule of inference P ≡ q ) ≡ [ p . q ) v P . Q ) ] |
A. | Exportation ( E x p)- |
B. | Material Equivalence ( Equiv )- |
C. | Distribution (Dist ) |
D. | Material Implication (Impl)- |
Answer» B. Material Equivalence ( Equiv )- |
269. |
Name the rule of inference p ≡ p . p ) |
A. | Material Implication (Impl)- |
B. | Commutation ( Com )- |
C. | Tautology ( Taut )- |
D. | Association (Assoc )- |
Answer» C. Tautology ( Taut )- |
270. |
The process of obtaining a proposition from a propositional function by substituting a constant for a variable is called ………………………………… |
A. | quantification |
B. | deduction |
C. | instantiation |
D. | generalization |
Answer» C. instantiation |
271. |
General propositions can be regarded as resulting from propositional functions by a process called |
A. | instantiation |
B. | substitution |
C. | deduction |
D. | quantification |
Answer» D. quantification |
272. |
The phrase ‘Given any x’ is called ……………………………………. |
A. | a propositional function |
B. | a universal quantifier |
C. | truth-function |
D. | an existential quantifier |
Answer» B. a universal quantifier |
273. |
Universal quantifier is symbolized as ………… |
A. | ‘ x)’ |
B. | ′ ∃x)’ |
C. | ‘ X’ |
D. | ‘ ∃x’ |
Answer» A. ‘ x)’ |
274. |
The phrase ‘ there is at least one x such that’ is called ……………………………… |
A. | a universal quantifier |
B. | a propositional function |
C. | an existential quantifier |
D. | truth-function |
Answer» C. an existential quantifier |
275. |
An ‘existential quantifier’ is symbolized as , |
A. | ‘ ∃x’ |
B. | ‘ x)’ |
C. | ‘ X’ |
D. | ( ∃x ) |
Answer» D. ( ∃x ) |
276. |
‘Everything is mortal ‘ is symbolized as ………… |
A. | ( ∃x ) M x |
B. | ( ∃x ) M x |
C. | (x) M x |
D. | (x) M x |
Answer» C. (x) M x |
277. |
‘ Something is mortal’ is symbolized as |
A. | (x) M x |
B. | ( ∃x ) M x |
C. | (x) M x |
D. | ( ∃x ) M x |
Answer» D. ( ∃x ) M x |
278. |
‘ Nothing is mortal’ is symbolized as |
A. | (x) M x |
B. | ( ∃x ) M x |
C. | ( ∃x ) M x |
D. | (x) M x |
Answer» A. (x) M x |
279. |
‘Something is not mortal’ is symbolized as |
A. | (x) M x |
B. | ( ∃x ) M x |
C. | ( ∃x ) M x |
D. | (x) M x |
Answer» B. ( ∃x ) M x |
280. |
The negation of x) M x is logically equivalent to………………………………. |
A. | (x) M x |
B. | ( ∃x ) M x |
C. | ( ∃x ) M x |
D. | (x) M x |
Answer» C. ( ∃x ) M x |
281. |
The negation of (x) M x is logically equivalent to………………………………. |
A. | ( ∃x ) M x |
B. | (x) M x |
C. | (x) M x |
D. | ( ∃x ) M x |
Answer» D. ( ∃x ) M x |
282. |
The negation of ( ∃x) M x is logically equivalent to …………………. |
A. | (x) M x |
B. | ( ∃x ) M x |
C. | (x) M x |
D. | ( ∃x ) M x |
Answer» A. (x) M x |
283. |
The negation of ( ∃x) M x is logically equivalent to ………………………. |
A. | ( ∃x ) M x |
B. | (x) M x |
C. | ( ∃x ) M x |
D. | (x) M x |
Answer» B. (x) M x |
284. |
‘ All fruits are ripe’ is symbolized as |
A. | ( ∃x ) ( F x . R x ) |
B. | ( ∃x ) ( F x . R x ) |
C. | (x) ( F x Ͻ R x ) |
D. | (x) ( F x Ͻ R x ) |
Answer» C. (x) ( F x Ͻ R x ) |
285. |
‘ No fruits are ripe ‘ is symbolized as |
A. | (x) ( F x Ͻ R x ) |
B. | ( ∃x ) ( F x . R x ) |
C. | (x) ( F x Ͻ R x ) |
D. | ( ∃x ) ( F x . R x ) |
Answer» C. (x) ( F x Ͻ R x ) |
286. |
‘Some fruits are ripe’ is symbolized as |
A. | ( ∃x ) ( F x . R x ) |
B. | ( ∃x ) ( F x . R x ) |
C. | (x) ( F x Ͻ R x ) |
D. | (x) ( F x Ͻ R x ) |
Answer» B. ( ∃x ) ( F x . R x ) |
287. |
‘Some fruits are not ripe’ is symbolized as |
A. | (x) ( F x Ͻ R x ) |
B. | (x) ( F x Ͻ R x ) |
C. | ( ∃x ) ( F x . R x ) |
D. | ( ∃x ) ( F x . R x ) |
Answer» D. ( ∃x ) ( F x . R x ) |
288. |
As per modern interpretation of traditional subject-predicate propositions, A and O propositions are ………………….. |
A. | contraries |
B. | sub-contraries |
C. | sub alterns |
D. | contradictories |
Answer» D. contradictories |
289. |
As per modern interpretation of traditional subject-predicate propositions, E and I propositions are ……………………………… |
A. | Contradictories |
B. | sub alterns |
C. | sub-contraries |
D. | contraries |
Answer» A. Contradictories |
290. |
The universal quantification of a propositional function is true if and only if ……... |
A. | at least one substitution instance is true |
B. | all of it’s substitution instances are false |
C. | all of it’s substitution instances are true |
D. | it has both true and false substitution instances |
Answer» C. all of it’s substitution instances are true |
291. |
The relation between the general propositions (x) Mx and (∃x ) Mx is …………… |
A. | contrary |
B. | contradiction |
C. | sub contrary |
D. | sub altern |
Answer» B. contradiction |
292. |
The relation between the general propositions x) Mx and (∃x ) Mx is ………..…… |
A. | contradiction |
B. | sub contrary |
C. | sub altern |
D. | contrary |
Answer» A. contradiction |
293. |
The relation between the general propositions x) Mx and x) Mx is ……..……… |
A. | sub contrary |
B. | contradiction |
C. | sub altern |
D. | contrary |
Answer» D. contrary |
294. |
The relation between the general propositions (∃x ) Mx and (∃x ) Mx is ………… |
A. | contrary |
B. | sub altern |
C. | sub contrary |
D. | contradiction |
Answer» C. sub contrary |
295. |
If x) Mx is true, then x) Mx is ………………… |
A. | true |
B. | false |
C. | true or false |
D. | valid |
Answer» B. false |
296. |
If (x) Mx is true, then (∃x ) Mx is ………………….. |
A. | false |
B. | true |
C. | valid |
D. | true or false |
Answer» B. true |
297. |
If (x) Mx is true, then (∃x ) Mx is ………………………….. |
A. | true or false |
B. | true |
C. | false |
D. | valid |
Answer» C. false |
298. |
If x) Mx is false, then x) Mx is ………………… |
A. | valid |
B. | true |
C. | true or false |
D. | false |
Answer» C. true or false |
299. |
If (x) Mx is false, then (∃x ) Mx is ………………….. |
A. | true or false |
B. | false |
C. | valid |
D. | true |
Answer» A. true or false |
300. |
If (x) Mx is false, then (∃x ) Mx is ………………………….. |
A. | true |
B. | valid |
C. | false |
D. | true or false |
Answer» A. true |
Done Studing? Take A Test.
Great job completing your study session! Now it's time to put your knowledge to the test. Challenge yourself, see how much you've learned, and identify areas for improvement. Don’t worry, this is all part of the journey to mastery. Ready for the next step? Take a quiz to solidify what you've just studied.