

McqMate
These multiple-choice questions (MCQs) are designed to enhance your knowledge and understanding in the following areas: Bachelor of Arts in Philosophy (BA Philosophy) , Master of Arts in Philosophy (MA Philosophy) .
301. |
If x) Mx is true, then (∃ x) Mx is ………………… |
A. | true or false |
B. | false |
C. | true |
D. | valid |
Answer» B. false |
302. |
If x) Mx is true, then (∃ x ) Mx is ………………… |
A. | valid |
B. | true |
C. | true or false |
D. | false |
Answer» B. true |
303. |
If x) Mx is true, then x) Mx is ………………… |
A. | false |
B. | true or false |
C. | true |
D. | valid |
Answer» A. false |
304. |
If x) Mx is false, then x) Mx is ………………… |
A. | true or false |
B. | true |
C. | valid |
D. | false |
Answer» A. true or false |
305. |
If x) Mx is false, then (∃ x) Mx is ………………… |
A. | false |
B. | valid |
C. | true |
D. | true or false |
Answer» C. true |
306. |
If x) Mx is false, then (∃ x ) Mx is ………………… |
A. | true or false |
B. | true |
C. | false |
D. | valid |
Answer» A. true or false |
307. |
If (∃ x ) Mx is true, then x) Mx is ………………… |
A. | false |
B. | valid |
C. | true |
D. | true or false |
Answer» D. true or false |
308. |
If (∃ x ) Mx is true, then x) Mx is ………………… |
A. | valid |
B. | true or false |
C. | false |
D. | true |
Answer» C. false |
309. |
If (∃ x ) Mx is true, then (∃ x ) Mx is ………………… |
A. | true |
B. | false |
C. | true or false |
D. | valid |
Answer» C. true or false |
310. |
If (∃ x ) Mx is false, then x) Mx is ………………… |
A. | true or false |
B. | valid |
C. | true |
D. | false |
Answer» D. false |
311. |
If (∃ x ) Mx is false, then x) Mx is ………………… |
A. | valid |
B. | false |
C. | true or false |
D. | true |
Answer» D. true |
312. |
If (∃ x ) Mx is false, then (∃ x ) Mx is ………………… |
A. | true |
B. | true or false |
C. | valid |
D. | false |
Answer» A. true |
313. |
If (∃ x ) Mx is true , then x) Mx is ………………… |
A. | false |
B. | true or false |
C. | valid |
D. | true |
Answer» A. false |
314. |
If (∃ x ) Mx is true , then x) Mx is ………………… |
A. | true |
B. | false |
C. | true or false |
D. | valid |
Answer» C. true or false |
315. |
If (∃ x ) Mx is true, then (∃ x ) Mx is ………………… |
A. | valid |
B. | true or false |
C. | false |
D. | true |
Answer» B. true or false |
316. |
If (∃ x ) Mx is false, then x) Mx is ………………… |
A. | true |
B. | true or false |
C. | valid |
D. | false |
Answer» A. true |
317. |
If (∃ x ) Mx is false, then x) Mx is ………………… |
A. | true |
B. | true |
C. | false |
D. | valid |
Answer» C. false |
318. |
If (∃ x ) Mx is false, then (∃ x ) Mx is ………………… |
A. | true |
B. | false |
C. | valid |
D. | true or false |
Answer» A. true |
319. |
If (x) ( H x Ͻ Mx ) is true, then (∃ x ) x . Mx ) is ………………… |
A. | true |
B. | true or false |
C. | false |
D. | valid |
Answer» C. false |
320. |
If (x) ( H x Ͻ Mx ) is false , then (∃ x ) x . Mx ) is ………………………… |
A. | valid |
B. | true |
C. | true or false |
D. | false |
Answer» B. true |
321. |
If (x) ( H x Ͻ Mx) is true, then (∃ x ) x . Mx ) is………………………. |
A. | false |
B. | valid |
C. | true |
D. | true or false |
Answer» A. false |
322. |
If (x) ( H x Ͻ Mx ) is false , then (∃ x ) x . Mx ) is ………………………. |
A. | true or false |
B. | false |
C. | valid |
D. | true |
Answer» D. true |
323. |
If (∃ x ) ( H x . Mx ) is true, then (x) ( H x Ͻ Mx ) is ………………… |
A. | true |
B. | true or false |
C. | false |
D. | valid |
Answer» C. false |
324. |
If (∃ x ) ( H x . Mx ) is false , then (x) ( H x Ͻ Mx ) is ………………… |
A. | valid |
B. | true |
C. | true or false |
D. | false |
Answer» B. true |
325. |
If (∃ x ) x . Mx ) is true, then (x) ( H x Ͻ Mx ) is ……………….. |
A. | false |
B. | valid |
C. | true |
D. | true or false |
Answer» A. false |
326. |
If (∃ x ) x . Mx ) is false , then (x) ( H x Ͻ Mx ) is ……………….. |
A. | valid |
B. | false |
C. | true or false |
D. | true |
Answer» D. true |
327. |
The ____________of an argument is that proposition which is affirmed on the basis of other propositions of the argument. |
A. | Questions |
B. | Propositions |
C. | Commands |
D. | Exclamations |
Answer» B. Propositions |
328. |
Every argument has a _________, in the analysis of which the terms ‘Premise’ and ‘conclusion’ are usually employed. |
A. | language |
B. | context |
C. | Structure |
D. | absolute |
Answer» C. Structure |
329. |
Deductive argument involve the claim that its premises provide __________ grounds for the truth of their conclusion |
A. | absolute |
B. | some |
C. | certain |
D. | trivial |
Answer» C. certain |
330. |
Inductive arguments involve the claim only that their premises provide __________ grounds for their conclusions. |
A. | two |
B. | essential |
C. | degree |
D. | difference |
Answer» B. essential |
331. |
Arguments, however are not properly characterized as being either true or false but valid and _________. |
A. | large |
B. | simple |
C. | complex |
D. | vague |
Answer» D. vague |
332. |
Conjunctions are truth functionally ____________ statements. |
A. | compound |
B. | simple |
C. | vague |
D. | large |
Answer» A. compound |
333. |
The truth value of _______ statement is true. |
A. | false |
B. | true |
C. | probable |
D. | conjunction |
Answer» B. true |
334. |
The truth value of the ____________ of two statements is completely determined by the truth value of its conjuncts. |
A. | Disjunction |
B. | contradiction |
C. | Dilemma |
D. | conjunction |
Answer» D. conjunction |
335. |
The statement Roses are red and leafs are green is a _________________ a) Conjunction b) Negation c) Disjunction d) Conditional |
A. | part |
B. | disjuncts |
C. | value |
D. | reason |
Answer» A. part |
336. |
When two statements are combined disjunctively by inserting the word ‘or’ between |
A. | addition |
B. | disjunction |
C. | negation |
D. | dilemma |
Answer» B. disjunction |
337. |
Any conditional with a true antecedent and a false consequent must ____________ |
A. | variable |
B. | disjunction |
C. | negation |
D. | antecedent |
Answer» C. negation |
338. |
An invalid argument form is one that has at least one substitution_________ with true premises and a false conclusion |
A. | variable |
B. | element |
C. | Instance |
D. | value |
Answer» C. Instance |
339. |
Raju is either sick or lazy is an example for |
A. | conjunction |
B. | Implication |
C. | disjunction |
D. | Negation |
Answer» C. disjunction |
340. |
A ____________proposition do not contain any other proposition as its constituent |
A. | Compound |
B. | Simple |
C. | true |
D. | false |
Answer» B. Simple |
341. |
A _______________proposition is one which contains other proposition as it’s Component |
A. | Simple |
B. | atomic |
C. | Compound |
D. | false |
Answer» C. Compound |
342. |
The symbolization for disjunction is __________ |
A. | % |
B. | $ |
C. | v |
D. | ~ |
Answer» C. v |
343. |
Validity of a deductive argument depends upon the ________ of the argument. |
A. | justification |
B. | content |
C. | form |
D. | function |
Answer» C. form |
344. |
An argument is sound when it is factually correct and is __________ |
A. | invalid |
B. | probable |
C. | vague |
D. | valid |
Answer» D. valid |
345. |
In a conditional, the component statement that follows “ then ” is called …………… |
A. | consequent |
B. | antecedent |
C. | “conjunct” |
D. | disjunct |
Answer» A. consequent |
346. |
Terms are constituents of logical ____________ |
A. | proposition |
B. | grammer |
C. | Sentences |
D. | subject |
Answer» A. proposition |
347. |
The symbol used for weak disjunction is |
A. | ~ |
B. | ↄ |
C. | v |
D. | ≠ |
Answer» C. v |
348. |
The symbol used for Biconditional is |
A. | ≠ |
B. | ≡ |
C. | ψ |
D. | ~ |
Answer» B. ≡ |
349. |
The symbolization for “it is not the case that the antecedent is true and the consequent is false” is _________________ |
A. | ~p |
B. | p . ~q |
C. | ~p . ~q |
D. | ~( p . ~q ) |
Answer» D. ~( p . ~q ) |
350. |
The statement form ~( p . ~q ) is equivalent to which of the following |
A. | ~p.q |
B. | ~p v q |
C. | p.~q |
D. | pvq |
Answer» B. ~p v q |
Done Studing? Take A Test.
Great job completing your study session! Now it's time to put your knowledge to the test. Challenge yourself, see how much you've learned, and identify areas for improvement. Don’t worry, this is all part of the journey to mastery. Ready for the next step? Take a quiz to solidify what you've just studied.